Feb 3, 2022 · An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study. ... May 6, 2020 · The independent and dependent variables are key to any scientific experiment, but how do you tell them apart? Here are the definitions of independent and dependent variables, examples of each type, and tips for telling them apart and graphing them. ... Aug 16, 2024 · An independent variable is defined as a variable that is changed or controlled in a scientific experiment. The independent variable represents the cause or reason for an outcome. Independent variables are the variables that the experimenter changes to test his or her dependent variable . ... Aug 17, 2018 · The independent variable is the variable that is controlled or changed in a scientific experiment to test its effect on the dependent variable. It doesn’t depend on another variable and isn’t changed by any factors an experimenter is trying to measure. ... Jan 3, 2024 · An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV). ... Mar 26, 2024 · An independent variable is a variable that is manipulated or controlled by the researcher to test its effect on the dependent variable. In an experiment, it is considered the “cause,” while the dependent variable represents the “effect.” ... Aug 12, 2023 · The independent variable in an experiment is the variable whose value the scientist systematically changes in order to see what effect the changes have. A well-designed experiment has only one independent variable in order to maintain a fair test. ... Apr 4, 2023 · The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment. For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable. ... Jun 2, 2024 · What Is An Independent Variable? An independent variable is one of the two types of variables used in a scientific experiment. The independent variable is the variable that can be controlled and changed; the dependent variable is directly affected by the change in the independent variable. ... The independent variable is one single factor that is changed by the scientist followed by observation to watch for changes. It is important that there is just one independent variable, so that results are not confusing. The dependent variable is the factor that changes as a result of the change to the independent variable. ... ">
  • Science, Tech, Math ›
  • Chemistry ›
  • Chemical Laws ›

Independent Variable Definition and Examples

Understand the Independent Variable in an Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

The independent variable and the dependent variable are the two main variables in a science experiment. Below is the definition of an independent variable and a look at how you might use it.

Key Takeaways: Independent Variable

  • The independent variable is the factor that you purposely change or control to see what effect it has.
  • The variable that responds to the change in the independent variable is called the dependent variable. The dependent variable depends on the independent variable.
  • The independent variable is graphed on the x-axis.

Independent Variable Definition

An independent variable is defined as a variable that is changed or controlled in a scientific experiment. The independent variable represents the cause or reason for an outcome. Independent variables are the variables that the experimenter changes to test his or her dependent variable . A change in the independent variable directly causes a change in the dependent variable. The effect on the dependent variable is measured and recorded.

Common misspellings: independant variable

Independent Variable Examples

Here are some examples of an independent variable.

  • A scientist is testing the effect of light and dark on the behavior of moths by turning a light on and off. The independent variable is the amount of light (cause) and the moth's reaction is the dependent variable (the effect).
  • In a study to determine the effect of temperature on plant pigmentation , the independent variable is the temperature, while the amount of pigment or color is the dependent variable.

Graphing the Independent Variable

When graphing data for an experiment, the independent variable is plotted on the x-axis, while the dependent variable is recorded on the y-axis. An easy way to keep the two variables straight is to use the acronym DRY MIX , which stands for:

  • Dependent variable that Responds to change goes on the Y axis
  • Manipulated or Independent variable goes on the X axis

Practice Identifying the Independent Variable

Students are often asked to identify the independent and dependent variable in an experiment. The difficulty is that the value of both of these variables can change. It is even possible for the dependent variable to remain unchanged in response to controlling the independent variable.

Example : You are asked to identify the independent and dependent variable in an experiment to see if there is a relationship between hours of sleep and student test scores.

There are two ways to identify the independent variable. The first is to write the hypothesis and see if it makes sense.

For example:

  • Student test scores do not affect the number of hours the students sleep.
  • The number of hours students sleep do not affect their test scores.

Only one of these statements makes sense. This type of hypothesis is constructed to state the independent variable followed by the predicted impact on the dependent variable. So, the number of hours of sleep is the independent variable.

The other way to identify the independent variable is more intuitive. Remember, the independent variable is the one the experimenter controls to measure its effect on the dependent variable. A researcher can control the number of hours a student sleeps. On the other hand, the scientist has no control over the students' test scores.

The independent variable always changes in an experiment, even if there is just a control and an experimental group. The dependent variable may or may not change in response to the independent variable. In the example regarding sleep and student test scores, the data might show no change in test scores, no matter how much sleep students get (although this outcome seems unlikely). The point is that a researcher knows the values of the independent variable. The value of the dependent variable is measured .

  • Babbie, Earl R. (2009). The Practice of Social Research (12th ed.). Wadsworth Publishing. ISBN 0-495-59841-0.
  • Dodge, Y. (2003). The Oxford Dictionary of Statistical Terms . OUP. ISBN 0-19-920613-9.
  • Everitt, B. S. (2002). The Cambridge Dictionary of Statistics (2nd ed.). Cambridge UP. ISBN 0-521-81099-X.
  • Gujarati, Damodar N.; Porter, Dawn C. (2009). "Terminology and Notation". Basic Econometrics (5th international ed.). New York: McGraw-Hill. p. 21. ISBN 978-007-127625-2.
  • Shadish, William R.; Cook, Thomas D.; Campbell, Donald T. (2002). Experimental and quasi-experimental designs for generalized causal inference . (Nachdr. ed.). Boston: Houghton Mifflin. ISBN 0-395-61556-9.
  • Oxidation Definition and Example in Chemistry
  • Dependent Variable vs. Independent Variable: What Is the Difference?
  • Heavy Metal Definition and List
  • Stoichiometry Definition in Chemistry
  • Melting Definition in Chemistry
  • The Combined Gas Law in Chemistry
  • pKa Definition in Chemistry
  • Element Symbol Definition in Chemistry
  • What Is an Element in Chemistry? Definition and Examples
  • Absolute Temperature Definition
  • Ionization Energy Definition and Trend
  • 4 Types and Examples of Chemical Weathering
  • Beer's Law Definition and Equation
  • The Chemical Composition of Air
  • Why Is the Carbon Cycle Important?
  • Definition of Air in Science

helpful professor logo

15 Independent and Dependent Variable Examples

15 Independent and Dependent Variable Examples

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

Learn about our Editorial Process

15 Independent and Dependent Variable Examples

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

independent variable definition in experiment

An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV).

By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.

This can provide very valuable information when studying just about any subject.

Because the researcher controls the level of the independent variable, it can be determined if the independent variable has a causal effect on the dependent variable.

The term causation is vitally important. Scientists want to know what causes changes in the dependent variable. The only way to do that is to manipulate the independent variable and observe any changes in the dependent variable.

Definition of Independent and Dependent Variables

The independent variable and dependent variable are used in a very specific type of scientific study called the experiment .

Although there are many variations of the experiment, generally speaking, it involves either the presence or absence of the independent variable and the observation of what happens to the dependent variable.

The research participants are randomly assigned to either receive the independent variable (called the treatment condition), or not receive the independent variable (called the control condition).

Other variations of an experiment might include having multiple levels of the independent variable.

If the independent variable affects the dependent variable, then it should be possible to observe changes in the dependent variable based on the presence or absence of the independent variable.  

Of course, there are a lot of issues to consider when conducting an experiment, but these are the basic principles.

These concepts should not be confused with predictor and outcome variables .

Examples of Independent and Dependent Variables

1. gatorade and improved athletic performance.

A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.

If they can back up that claim with hard scientific data, that would be great for sales.

So, the researcher goes to a nearby university and randomly selects both male and female athletes from several sports: track and field, volleyball, basketball, and football. Each athlete will run on a treadmill for one hour while their heart rate is tracked.

All of the athletes are given the exact same amount of liquid to consume 30-minutes before and during their run. Half are given Gatorade, and the other half are given water, but no one knows what they are given because both liquids have been colored.

In this example, the independent variable is Gatorade, and the dependent variable is heart rate.  

2. Chemotherapy and Cancer

A hospital is investigating the effectiveness of a new type of chemotherapy on cancer. The researchers identified 120 patients with relatively similar types of cancerous tumors in both size and stage of progression.

The patients are randomly assigned to one of three groups: one group receives no chemotherapy, one group receives a low dose of chemotherapy, and one group receives a high dose of chemotherapy.

Each group receives chemotherapy treatment three times a week for two months, except for the no-treatment group. At the end of two months, the doctors measure the size of each patient’s tumor.

In this study, despite the ethical issues (remember this is just a hypothetical example), the independent variable is chemotherapy, and the dependent variable is tumor size.

3. Interior Design Color and Eating Rate

A well-known fast-food corporation wants to know if the color of the interior of their restaurants will affect how fast people eat. Of course, they would prefer that consumers enter and exit quickly to increase sales volume and profit.

So, they rent space in a large shopping mall and create three different simulated restaurant interiors of different colors. One room is painted mostly white with red trim and seats; one room is painted mostly white with blue trim and seats; and one room is painted mostly white with off-white trim and seats.

Next, they randomly select shoppers on Saturdays and Sundays to eat for free in one of the three rooms. Each shopper is given a box of the same food and drink items and sent to one of the rooms. The researchers record how much time elapses from the moment they enter the room to the moment they leave.

The independent variable is the color of the room, and the dependent variable is the amount of time spent in the room eating.

4. Hair Color and Attraction

A large multinational cosmetics company wants to know if the color of a woman’s hair affects the level of perceived attractiveness in males. So, they use Photoshop to manipulate the same image of a female by altering the color of her hair: blonde, brunette, red, and brown.

Next, they randomly select university males to enter their testing facilities. Each participant sits in front of a computer screen and responds to questions on a survey. At the end of the survey, the screen shows one of the photos of the female.

At the same time, software on the computer that utilizes the computer’s camera is measuring each male’s pupil dilation. The researchers believe that larger dilation indicates greater perceived attractiveness.

The independent variable is hair color, and the dependent variable is pupil dilation.

5. Mozart and Math

After many claims that listening to Mozart will make you smarter, a group of education specialists decides to put it to the test. So, first, they go to a nearby school in a middle-class neighborhood.

During the first three months of the academic year, they randomly select some 5th-grade classrooms to listen to Mozart during their lessons and exams. Other 5 th grade classrooms will not listen to any music during their lessons and exams.

The researchers then compare the scores of the exams between the two groups of classrooms.

Although there are a lot of obvious limitations to this hypothetical, it is the first step.

The independent variable is Mozart, and the dependent variable is exam scores.

6. Essential Oils and Sleep

A company that specializes in essential oils wants to examine the effects of lavender on sleep quality. They hire a sleep research lab to conduct the study. The researchers at the lab have their usual test volunteers sleep in individual rooms every night for one week.

The conditions of each room are all exactly the same, except that half of the rooms have lavender released into the rooms and half do not. While the study participants are sleeping, their heart rates and amount of time spent in deep sleep are recorded with high-tech equipment.

At the end of the study, the researchers compare the total amount of time spent in deep sleep of the lavender-room participants with the no lavender-room participants.

The independent variable in this sleep study is lavender, and the dependent variable is the total amount of time spent in deep sleep.

7. Teaching Style and Learning

A group of teachers is interested in which teaching method will work best for developing critical thinking skills.

So, they train a group of teachers in three different teaching styles : teacher-centered, where the teacher tells the students all about critical thinking; student-centered, where the students practice critical thinking and receive teacher feedback; and AI-assisted teaching, where the teacher uses a special software program to teach critical thinking.

At the end of three months, all the students take the same test that assesses critical thinking skills. The teachers then compare the scores of each of the three groups of students.

The independent variable is the teaching method, and the dependent variable is performance on the critical thinking test.

8. Concrete Mix and Bridge Strength

A chemicals company has developed three different versions of their concrete mix. Each version contains a different blend of specially developed chemicals. The company wants to know which version is the strongest.

So, they create three bridge molds that are identical in every way. They fill each mold with one of the different concrete mixtures. Next, they test the strength of each bridge by placing progressively more weight on its center until the bridge collapses.

In this study, the independent variable is the concrete mixture, and the dependent variable is the amount of weight at collapse.

9. Recipe and Consumer Preferences

People in the pizza business know that the crust is key. Many companies, large and small, will keep their recipe a top secret. Before rolling out a new type of crust, the company decides to conduct some research on consumer preferences.

The company has prepared three versions of their crust that vary in crunchiness, they are: a little crunchy, very crunchy, and super crunchy. They already have a pool of consumers that fit their customer profile and they often use them for testing.

Each participant sits in a booth and takes a bite of one version of the crust. They then indicate how much they liked it by pressing one of 5 buttons: didn’t like at all, liked, somewhat liked, liked very much, loved it.

The independent variable is the level of crust crunchiness, and the dependent variable is how much it was liked.

10. Protein Supplements and Muscle Mass

A large food company is considering entering the health and nutrition sector. Their R&D food scientists have developed a protein supplement that is designed to help build muscle mass for people that work out regularly.

The company approaches several gyms near its headquarters. They enlist the cooperation of over 120 gym rats that work out 5 days a week. Their muscle mass is measured, and only those with a lower level are selected for the study, leaving a total of 80 study participants.

They randomly assign half of the participants to take the recommended dosage of their supplement every day for three months after each workout. The other half takes the same amount of something that looks the same but actually does nothing to the body.

At the end of three months, the muscle mass of all participants is measured.

The independent variable is the supplement, and the dependent variable is muscle mass.  

11. Air Bags and Skull Fractures

In the early days of airbags , automobile companies conducted a great deal of testing. At first, many people in the industry didn’t think airbags would be effective at all. Fortunately, there was a way to test this theory objectively.

In a representative example: Several crash cars were outfitted with an airbag, and an equal number were not. All crash cars were of the same make, year, and model. Then the crash experts rammed each car into a crash wall at the same speed. Sensors on the crash dummy skulls allowed for a scientific analysis of how much damage a human skull would incur.

The amount of skull damage of dummies in cars with airbags was then compared with those without airbags.

The independent variable was the airbag and the dependent variable was the amount of skull damage.

12. Vitamins and Health

Some people take vitamins every day. A group of health scientists decides to conduct a study to determine if taking vitamins improves health.

They randomly select 1,000 people that are relatively similar in terms of their physical health. The key word here is “similar.”

Because the scientists have an unlimited budget (and because this is a hypothetical example, all of the participants have the same meals delivered to their homes (breakfast, lunch, and dinner), every day for one year.

In addition, the scientists randomly assign half of the participants to take a set of vitamins, supplied by the researchers every day for 1 year. The other half do not take the vitamins.

At the end of one year, the health of all participants is assessed, using blood pressure and cholesterol level as the key measurements.

In this highly unrealistic study, the independent variable is vitamins, and the dependent variable is health, as measured by blood pressure and cholesterol levels.

13. Meditation and Stress

Does practicing meditation reduce stress? If you have ever wondered if this is true or not, then you are in luck because there is a way to know one way or the other.

All we have to do is find 90 people that are similar in age, stress levels, diet and exercise, and as many other factors as we can think of.

Next, we randomly assign each person to either practice meditation every day, three days a week, or not at all. After three months, we measure the stress levels of each person and compare the groups.

How should we measure stress? Well, there are a lot of ways. We could measure blood pressure, or the amount of the stress hormone cortisol in their blood, or by using a paper and pencil measure such as a questionnaire that asks them how much stress they feel.

In this study, the independent variable is meditation and the dependent variable is the amount of stress (however it is measured).

14. Video Games and Aggression

When video games started to become increasingly graphic, it was a huge concern in many countries in the world. Educators, social scientists, and parents were shocked at how graphic games were becoming.

Since then, there have been hundreds of studies conducted by psychologists and other researchers. A lot of those studies used an experimental design that involved males of various ages randomly assigned to play a graphic or non-graphic video game.

Afterward, their level of aggression was measured via a wide range of methods, including direct observations of their behavior, their actions when given the opportunity to be aggressive, or a variety of other measures.

So many studies have used so many different ways of measuring aggression.

In these experimental studies, the independent variable was graphic video games, and the dependent variable was observed level of aggression.

15. Vehicle Exhaust and Cognitive Performance

Car pollution is a concern for a lot of reasons. In addition to being bad for the environment, car exhaust may cause damage to the brain and impair cognitive performance.

One way to examine this possibility would be to conduct an animal study. The research would look something like this: laboratory rats would be raised in three different rooms that varied in the degree of car exhaust circulating in the room: no exhaust, little exhaust, or a lot of exhaust.

After a certain period of time, perhaps several months, the effects on cognitive performance could be measured.

One common way of assessing cognitive performance in laboratory rats is by measuring the amount of time it takes to run a maze successfully. It would also be possible to examine the physical effects of car exhaust on the brain by conducting an autopsy.

In this animal study, the independent variable would be car exhaust and the dependent variable would be amount of time to run a maze.

Read Next: Extraneous Variables Examples

The experiment is an incredibly valuable way to answer scientific questions regarding the cause and effect of certain variables. By manipulating the level of an independent variable and observing corresponding changes in a dependent variable, scientists can gain an understanding of many phenomena.

For example, scientists can learn if graphic video games make people more aggressive, if mediation reduces stress, if Gatorade improves athletic performance, and even if certain medical treatments can cure cancer.

The determination of causality is the key benefit of manipulating the independent variable and them observing changes in the dependent variable. Other research methodologies can reveal factors that are related to the dependent variable or associated with the dependent variable, but only when the independent variable is controlled by the researcher can causality be determined.

Ferguson, C. J. (2010). Blazing Angels or Resident Evil? Can graphic video games be a force for good? Review of General Psychology, 14 (2), 68-81. https://doi.org/10.1037/a0018941

Flannelly, L. T., Flannelly, K. J., & Jankowski, K. R. (2014). Independent, dependent, and other variables in healthcare and chaplaincy research. Journal of Health Care Chaplaincy , 20 (4), 161–170. https://doi.org/10.1080/08854726.2014.959374

Manocha, R., Black, D., Sarris, J., & Stough, C.(2011). A randomized, controlled trial of meditation for work stress, anxiety and depressed mood in full-time workers. Evidence-Based Complementary and Alternative Medicine , vol. 2011, Article ID 960583. https://doi.org/10.1155/2011/960583

Rumrill, P. D., Jr. (2004). Non-manipulation quantitative designs. Work (Reading, Mass.) , 22 (3), 255–260.

Taylor, J. M., & Rowe, B. J. (2012). The “Mozart Effect” and the mathematical connection, Journal of College Reading and Learning, 42 (2), 51-66.  https://doi.org/10.1080/10790195.2012.10850354

Dave

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 23 Achieved Status Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Ableism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Theory of Planned Behavior Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Definitions Of Control, Constant, Independent And Dependent Variables In A Science Experiment

Variables in a Science Experiment

The point of an experiment is to help define the cause and effect relationships between components of a natural process or reaction. The factors that can change value during an experiment or between experiments, such as water temperature, are called scientific variables, while those that stay the same, such as acceleration due to gravity at a certain location, are called constants.

The scientific method includes three main types of variables: constants, independent, and dependent variables. In a science experiment, each of these variables define a different measured or constrained aspect of the system.

Constant Variables

Experimental constants are values that should not change either during or between experiments. Many natural forces and properties, such as the speed of light and the atomic weight of gold, are experimental constants. In some cases, a property can be considered constant for the purposes of an experiment even though it technically could change under certain circumstances. The boiling point of water changes with altitude and acceleration due to gravity decreases with distance from the earth, but for experiments in one location these can also be considered constants.

Sometimes also called a controlled variable. A constant is a variable that could change, but that the experimenter intentionally keeps constant in order to more clearly isolate the relationship between the independent variable and the dependent variable.

TL;DR (Too Long; Didn't Read)

If extraneous variables are not properly constrained, they are referred to as confounding variables, as they interfere with the interpretation of the results of the experiment.

Some examples of control variables might be found with an experiment examining the relationship between the amount of sunlight plants receive (independent variable) and subsequent plant growth (dependent variable). The experiment should control the amount of water the plants receive and when, what type of soil they are planted in, the type of plant, and as many other different variables as possible. This way, only the amount of light is being changed between trials, and the outcome of the experiment can be directly applied to understanding only this relationship.

Independent Variable

The independent variable in an experiment is the variable whose value the scientist systematically changes in order to see what effect the changes have. A well-designed experiment has only one independent variable in order to maintain a fair test. If the experimenter were to change two or more variables, it would be harder to explain what caused the changes in the experimental results. For example, someone trying to find how quickly water boils could alter the volume of water or the heating temperature, but not both.

Dependent Variable

A dependent variable – sometimes called a responding variable – is what the experimenter observes to find the effect of systematically varying the independent variable. While an experiment may have multiple dependent variables, it is often wisest to focus the experiment on one dependent variable so that the relationship between it and the independent variable can be clearly isolated. For example, an experiment could examine how much sugar can dissolve in a set volume of water at various temperatures. The experimenter systematically alters temperature (independent variable) to see its effect on the quantity of dissolved sugar (dependent variable).

Control Groups

In some experiment designs, there might be one effect or manipulated variable that is being measured. Sometimes there might be one collection of measurements or subjects completely separated from this variable called the control group. These control groups are held as a standard to measure the results of a scientific experiment.

An example of such a situation might be a study regarding the effectiveness of a certain medication. There might be multiple experimental groups that receive the medication in varying doses and applications, and there would likely be a control group that does not receive the medication at all.

Representing Results

Identifying which variables are independent, dependent, and controlled helps to collect data, perform useful experiments, and accurately communicate results. When graphing or displaying data, it is crucial to represent data accurately and understandably. Typically, the independent variable goes on the x-axis, and the dependent variable goes on the y-axis.

  • ScienceBuddies.org: Variables in Your Science Fair Project

Cite This Article

Twist, Benjamin. "Definitions Of Control, Constant, Independent And Dependent Variables In A Science Experiment" sciencing.com , https://www.sciencing.com/definitions-dependent-variables-science-experiment-8623758/. 12 August 2023.

Twist, Benjamin. (2023, August 12). Definitions Of Control, Constant, Independent And Dependent Variables In A Science Experiment. sciencing.com . Retrieved from https://www.sciencing.com/definitions-dependent-variables-science-experiment-8623758/

Twist, Benjamin. Definitions Of Control, Constant, Independent And Dependent Variables In A Science Experiment last modified August 12, 2023. https://www.sciencing.com/definitions-dependent-variables-science-experiment-8623758/

Recommended

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Independent Variables in Psychology

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

independent variable definition in experiment

Amanda Tust is an editor, fact-checker, and writer with a Master of Science in Journalism from Northwestern University's Medill School of Journalism.

independent variable definition in experiment

Adam Berry / Getty Images

  • Identifying

Potential Pitfalls

The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment.

For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable. Researchers are trying to determine if changes to the independent variable (studying) result in significant changes to the dependent variable (the test results).

In general, experiments have these three types of variables: independent, dependent, and controlled.

Identifying the Independent Variable

If you are having trouble identifying the independent variables of an experiment, there are some questions that may help:

  • Is the variable one that is being manipulated by the experimenters?
  • Are researchers trying to identify how the variable influences another variable?
  • Is the variable something that cannot be changed but that is not dependent on other variables in the experiment?

Researchers are interested in investigating the effects of the independent variable on other variables, which are known as dependent variables (DV). The independent variable is one that the researchers either manipulate (such as the amount of something) or that already exists but is not dependent upon other variables (such as the age of the participants).

Below are the key differences when looking at an independent variable vs. dependent variable.

Expected to influence the dependent variable

Doesn't change as a result of the experiment

Can be manipulated by researchers in order to study the dependent variable

Expected to be affected by the independent variable

Expected to change as a result of the experiment

Not manipulated by researchers; its changes occur as a result of the independent variable

There can be all different types of independent variables. The independent variables in a particular experiment all depend on the hypothesis and what the experimenters are investigating.

Independent variables also have different levels. In some experiments, there may only be one level of an IV. In other cases, multiple levels of the IV may be used to look at the range of effects that the variable may have.

In an experiment on the effects of the type of diet on weight loss, for example, researchers might look at several different types of diet. Each type of diet that the experimenters look at would be a different level of the independent variable while weight loss would always be the dependent variable.

To understand this concept, it's helpful to take a look at the independent variable in research examples.

In Organizations

A researcher wants to determine if the color of an office has any effect on worker productivity. In an experiment, one group of workers performs a task in a yellow room while another performs the same task in a blue room. In this example, the color of the office is the independent variable.

In the Workplace

A business wants to determine if giving employees more control over how to do their work leads to increased job satisfaction. In an experiment, one group of workers is given a great deal of input in how they perform their work, while the other group is not. The amount of input the workers have over their work is the independent variable in this example.

In Educational Research

Educators are interested in whether participating in after-school math tutoring can increase scores on standardized math exams. In an experiment, one group of students attends an after-school tutoring session twice a week while another group of students does not receive this additional assistance. In this case, participation in after-school math tutoring is the independent variable.

In Mental Health Research

Researchers want to determine if a new type of treatment will lead to a reduction in anxiety for patients living with social phobia. In an experiment, some volunteers receive the new treatment, another group receives a different treatment, and a third group receives no treatment. The independent variable in this example is the type of therapy .

Sometimes varying the independent variables will result in changes in the dependent variables. In other cases, researchers might find that changes in the independent variables have no effect on the variables that are being measured.

At the outset of an experiment, it is important for researchers to operationally define the independent variable. An operational definition describes exactly what the independent variable is and how it is measured. Doing this helps ensure that the experiments know exactly what they are looking at or manipulating, allowing them to measure it and determine if it is the IV that is causing changes in the DV.

Choosing an Independent Variable

If you are designing an experiment, here are a few tips for choosing an independent variable (or variables):

  • Select independent variables that you think will cause changes in another variable. Come up with a hypothesis for what you expect to happen.
  • Look at other experiments for examples and identify different types of independent variables.
  • Keep your control group and experimental groups similar in other characteristics, but vary only the treatment they receive in terms of the independent variable.   For example, your control group will receive either no treatment or no changes in the independent variable while your experimental group will receive the treatment or a different level of the independent variable.

It is also important to be aware that there may be other variables that might influence the results of an experiment. Two other kinds of variables that might influence the outcome include:

  • Extraneous variables : These are variables that might affect the relationships between the independent variable and the dependent variable; experimenters usually try to identify and control for these variables. 
  • Confounding variables : When an extraneous variable cannot be controlled for in an experiment, it is known as a confounding variable . 

Extraneous variables can also include demand characteristics (which are clues about how the participants should respond) and experimenter effects (which is when the researchers accidentally provide clues about how a participant will respond).

Kaliyadan F, Kulkarni V. Types of variables, descriptive statistics, and sample size .  Indian Dermatol Online J . 2019;10(1):82-86. doi:10.4103/idoj.IDOJ_468_18

Weiten, W. Psychology: Themes and Variations, 10th ed . Boston, MA: Cengage Learning; 2017.

National Library of Medicine. Dependent and independent variables .

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

science education resource

  • Activities, Experiments, Online Games, Visual Aids
  • Activities, Experiments, and Investigations
  • Experimental Design and the Scientific Method

Experimental Design - Independent, Dependent, and Controlled Variables

Scientific experiments are meant to show cause and effect of a phenomena (relationships in nature).  The “ variables ” are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment.

An experiment can have three kinds of variables: i ndependent, dependent, and controlled .

  • The independent variable is one single factor that is changed by the scientist followed by observation to watch for changes. It is important that there is just one independent variable, so that results are not confusing.
  • The dependent variable is the factor that changes as a result of the change to the independent variable.
  • The controlled variables (or constant variables) are factors that the scientist wants to remain constant if the experiment is to show accurate results. To be able to measure results, each of the variables must be able to be measured.

For example, let’s design an experiment with two plants sitting in the sun side by side. The controlled variables (or constants) are that at the beginning of the experiment, the plants are the same size, get the same amount of sunlight, experience the same ambient temperature and are in the same amount and consistency of soil (the weight of the soil and container should be measured before the plants are added). The independent variable is that one plant is getting watered (1 cup of water) every day and one plant is getting watered (1 cup of water) once a week. The dependent variables are the changes in the two plants that the scientist observes over time.

Experimental Design - Independent, Dependent, and Controlled Variables

Can you describe the dependent variable that may result from this experiment? After four weeks, the dependent variable may be that one plant is taller, heavier and more developed than the other. These results can be recorded and graphed by measuring and comparing both plants’ height, weight (removing the weight of the soil and container recorded beforehand) and a comparison of observable foliage.

Using What You Learned: Design another experiment using the two plants, but change the independent variable. Can you describe the dependent variable that may result from this new experiment?

Think of another simple experiment and name the independent, dependent, and controlled variables. Use the graphic organizer included in the PDF below to organize your experiment's variables.

High Resolution Version for Printing

Citing research references.

When you research information you must cite the reference. Citing for websites is different from citing from books, magazines and periodicals. The style of citing shown here is from the MLA Style Citations (Modern Language Association).

When citing a WEBSITE the general format is as follows. Author Last Name, First Name(s). "Title: Subtitle of Part of Web Page, if appropriate." Title: Subtitle: Section of Page if appropriate. Sponsoring/Publishing Agency, If Given. Additional significant descriptive information. Date of Electronic Publication or other Date, such as Last Updated. Day Month Year of access < URL >.

Here is an example of citing this page:

Amsel, Sheri. "Experimental Design - Independent, Dependent, and Controlled Variables" Exploring Nature Educational Resource ©2005-2024. December 24, 2024 < http://www.exploringnature.org/db/view/Experimental-Design-Independent-Dependent-and-Controlled-Variables >

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

IMAGES

  1. Bar Graph Rules Independent and Dependent Variables Continuous or Discrete

    independent variable definition in experiment

  2. 15 Independent and Dependent Variable Examples (2024)

    independent variable definition in experiment

  3. Dependent Variable Definition and Examples

    independent variable definition in experiment

  4. Independent vs Dependent Variables

    independent variable definition in experiment

  5. Image result for independent and dependent variables

    independent variable definition in experiment

  6. Types of Variables in Science Experiments

    independent variable definition in experiment

COMMENTS

  1. Independent vs. Dependent Variables | Definition & Examples - Scribbr">Independent vs. Dependent Variables | Definition & Examples -...

    Feb 3, 2022 · An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

  2. Independent and Dependent Variables Examples - Science Notes and Projects">Independent and Dependent Variables Examples - Science Notes and...

    May 6, 2020 · The independent and dependent variables are key to any scientific experiment, but how do you tell them apart? Here are the definitions of independent and dependent variables, examples of each type, and tips for telling them apart and graphing them.

  3. Independent Variable Definition and Examples - ThoughtCo">Independent Variable Definition and Examples - ThoughtCo

    Aug 16, 2024 · An independent variable is defined as a variable that is changed or controlled in a scientific experiment. The independent variable represents the cause or reason for an outcome. Independent variables are the variables that the experimenter changes to test his or her dependent variable .

  4. an Independent Variable? Definition and Examples">What Is an Independent Variable? Definition and Examples

    Aug 17, 2018 · The independent variable is the variable that is controlled or changed in a scientific experiment to test its effect on the dependent variable. It doesn’t depend on another variable and isn’t changed by any factors an experimenter is trying to measure.

  5. Independent and Dependent Variable Examples - Helpful Professor">15 Independent and Dependent Variable Examples - Helpful...

    Jan 3, 2024 · An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV).

  6. Independent VariableDefinition, Types and Examples - Research Method">Independent VariableDefinition, Types and Examples - Research...

    Mar 26, 2024 · An independent variable is a variable that is manipulated or controlled by the researcher to test its effect on the dependent variable. In an experiment, it is considered the “cause,” while the dependent variable represents the “effect.”

  7. Independent And Dependent Variables ...">Definitions Of Control, Constant, Independent And Dependent ...

    Aug 12, 2023 · The independent variable in an experiment is the variable whose value the scientist systematically changes in order to see what effect the changes have. A well-designed experiment has only one independent variable in order to maintain a fair test.

  8. Independent Variable in Psychology: Examples and Importance - Verywell Mind">Independent Variable in Psychology: Examples and Importance -...

    Apr 4, 2023 · The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment. For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable.

  9. Independent Variable Science: Definition, Explanation And Examples">Independent Variable Science: Definition, Explanation And...

    Jun 2, 2024 · What Is An Independent Variable? An independent variable is one of the two types of variables used in a scientific experiment. The independent variable is the variable that can be controlled and changed; the dependent variable is directly affected by the change in the independent variable.

  10. Experimental Design - Independent, Dependent, and Controlled Variables">Experimental Design - Independent, Dependent, and Controlled...

    The independent variable is one single factor that is changed by the scientist followed by observation to watch for changes. It is important that there is just one independent variable, so that results are not confusing. The dependent variable is the factor that changes as a result of the change to the independent variable.