What is The Null Hypothesis & When Do You Reject The Null Hypothesis
Julia Simkus
Editor at Simply Psychology
BA (Hons) Psychology, Princeton University
Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.
Learn about our Editorial Process
Saul McLeod, PhD
Editor-in-Chief for Simply Psychology
BSc (Hons) Psychology, MRes, PhD, University of Manchester
Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.
Olivia Guy-Evans, MSc
Associate Editor for Simply Psychology
BSc (Hons) Psychology, MSc Psychology of Education
Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.
On This Page:
A null hypothesis is a statistical concept suggesting no significant difference or relationship between measured variables. It’s the default assumption unless empirical evidence proves otherwise.
The null hypothesis states no relationship exists between the two variables being studied (i.e., one variable does not affect the other).
The null hypothesis is the statement that a researcher or an investigator wants to disprove.
Testing the null hypothesis can tell you whether your results are due to the effects of manipulating the dependent variable or due to random chance.
How to Write a Null Hypothesis
Null hypotheses (H0) start as research questions that the investigator rephrases as statements indicating no effect or relationship between the independent and dependent variables.
It is a default position that your research aims to challenge or confirm.
For example, if studying the impact of exercise on weight loss, your null hypothesis might be:
There is no significant difference in weight loss between individuals who exercise daily and those who do not.
Examples of Null Hypotheses
When do we reject the null hypothesis .
We reject the null hypothesis when the data provide strong enough evidence to conclude that it is likely incorrect. This often occurs when the p-value (probability of observing the data given the null hypothesis is true) is below a predetermined significance level.
If the collected data does not meet the expectation of the null hypothesis, a researcher can conclude that the data lacks sufficient evidence to back up the null hypothesis, and thus the null hypothesis is rejected.
Rejecting the null hypothesis means that a relationship does exist between a set of variables and the effect is statistically significant ( p > 0.05).
If the data collected from the random sample is not statistically significance , then the null hypothesis will be accepted, and the researchers can conclude that there is no relationship between the variables.
You need to perform a statistical test on your data in order to evaluate how consistent it is with the null hypothesis. A p-value is one statistical measurement used to validate a hypothesis against observed data.
Calculating the p-value is a critical part of null-hypothesis significance testing because it quantifies how strongly the sample data contradicts the null hypothesis.
The level of statistical significance is often expressed as a p -value between 0 and 1. The smaller the p-value, the stronger the evidence that you should reject the null hypothesis.
Usually, a researcher uses a confidence level of 95% or 99% (p-value of 0.05 or 0.01) as general guidelines to decide if you should reject or keep the null.
When your p-value is less than or equal to your significance level, you reject the null hypothesis.
In other words, smaller p-values are taken as stronger evidence against the null hypothesis. Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis.
In this case, the sample data provides insufficient data to conclude that the effect exists in the population.
Because you can never know with complete certainty whether there is an effect in the population, your inferences about a population will sometimes be incorrect.
When you incorrectly reject the null hypothesis, it’s called a type I error. When you incorrectly fail to reject it, it’s called a type II error.
Why Do We Never Accept The Null Hypothesis?
The reason we do not say “accept the null” is because we are always assuming the null hypothesis is true and then conducting a study to see if there is evidence against it. And, even if we don’t find evidence against it, a null hypothesis is not accepted.
A lack of evidence only means that you haven’t proven that something exists. It does not prove that something doesn’t exist.
It is risky to conclude that the null hypothesis is true merely because we did not find evidence to reject it. It is always possible that researchers elsewhere have disproved the null hypothesis, so we cannot accept it as true, but instead, we state that we failed to reject the null.
One can either reject the null hypothesis, or fail to reject it, but can never accept it.
Why Do We Use The Null Hypothesis?
We can never prove with 100% certainty that a hypothesis is true; We can only collect evidence that supports a theory. However, testing a hypothesis can set the stage for rejecting or accepting this hypothesis within a certain confidence level.
The null hypothesis is useful because it can tell us whether the results of our study are due to random chance or the manipulation of a variable (with a certain level of confidence).
A null hypothesis is rejected if the measured data is significantly unlikely to have occurred and a null hypothesis is accepted if the observed outcome is consistent with the position held by the null hypothesis.
Rejecting the null hypothesis sets the stage for further experimentation to see if a relationship between two variables exists.
Hypothesis testing is a critical part of the scientific method as it helps decide whether the results of a research study support a particular theory about a given population. Hypothesis testing is a systematic way of backing up researchers’ predictions with statistical analysis.
It helps provide sufficient statistical evidence that either favors or rejects a certain hypothesis about the population parameter.
Purpose of a Null Hypothesis
- The primary purpose of the null hypothesis is to disprove an assumption.
- Whether rejected or accepted, the null hypothesis can help further progress a theory in many scientific cases.
- A null hypothesis can be used to ascertain how consistent the outcomes of multiple studies are.
Do you always need both a Null Hypothesis and an Alternative Hypothesis?
The null (H0) and alternative (Ha or H1) hypotheses are two competing claims that describe the effect of the independent variable on the dependent variable. They are mutually exclusive, which means that only one of the two hypotheses can be true.
While the null hypothesis states that there is no effect in the population, an alternative hypothesis states that there is statistical significance between two variables.
The goal of hypothesis testing is to make inferences about a population based on a sample. In order to undertake hypothesis testing, you must express your research hypothesis as a null and alternative hypothesis. Both hypotheses are required to cover every possible outcome of the study.
What is the difference between a null hypothesis and an alternative hypothesis?
The alternative hypothesis is the complement to the null hypothesis. The null hypothesis states that there is no effect or no relationship between variables, while the alternative hypothesis claims that there is an effect or relationship in the population.
It is the claim that you expect or hope will be true. The null hypothesis and the alternative hypothesis are always mutually exclusive, meaning that only one can be true at a time.
What are some problems with the null hypothesis?
One major problem with the null hypothesis is that researchers typically will assume that accepting the null is a failure of the experiment. However, accepting or rejecting any hypothesis is a positive result. Even if the null is not refuted, the researchers will still learn something new.
Why can a null hypothesis not be accepted?
We can either reject or fail to reject a null hypothesis, but never accept it. If your test fails to detect an effect, this is not proof that the effect doesn’t exist. It just means that your sample did not have enough evidence to conclude that it exists.
We can’t accept a null hypothesis because a lack of evidence does not prove something that does not exist. Instead, we fail to reject it.
Failing to reject the null indicates that the sample did not provide sufficient enough evidence to conclude that an effect exists.
If the p-value is greater than the significance level, then you fail to reject the null hypothesis.
Is a null hypothesis directional or non-directional?
A hypothesis test can either contain an alternative directional hypothesis or a non-directional alternative hypothesis. A directional hypothesis is one that contains the less than (“<“) or greater than (“>”) sign.
A nondirectional hypothesis contains the not equal sign (“≠”). However, a null hypothesis is neither directional nor non-directional.
A null hypothesis is a prediction that there will be no change, relationship, or difference between two variables.
The directional hypothesis or nondirectional hypothesis would then be considered alternative hypotheses to the null hypothesis.
Gill, J. (1999). The insignificance of null hypothesis significance testing. Political research quarterly , 52 (3), 647-674.
Krueger, J. (2001). Null hypothesis significance testing: On the survival of a flawed method. American Psychologist , 56 (1), 16.
Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behavior research methods , 43 , 679-690.
Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy. Psychological methods , 5 (2), 241.
Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test. Psychological bulletin , 57 (5), 416.
- Mathematics
- Number System and Arithmetic
- Trigonometry
- Probability
- Mensuration
- Maths Formulas
- Integration Formulas
- Differentiation Formulas
- Trigonometry Formulas
- Algebra Formulas
- Mensuration Formula
- Statistics Formulas
- Trigonometric Table
Null Hypothesis
Null Hypothesis , often denoted as H 0, is a foundational concept in statistical hypothesis testing. It represents an assumption that no significant difference, effect, or relationship exists between variables within a population. It serves as a baseline assumption, positing no observed change or effect occurring. The null is t he truth or falsity of an idea in analysis.
In this article, we will discuss the null hypothesis in detail, along with some solved examples and questions on the null hypothesis.
Table of Content
What is Null Hypothesis?
Null hypothesis symbol, formula of null hypothesis, types of null hypothesis, null hypothesis examples, principle of null hypothesis, how do you find null hypothesis, null hypothesis in statistics, null hypothesis and alternative hypothesis, null hypothesis and alternative hypothesis examples, null hypothesis - practice problems.
Null Hypothesis in statistical analysis suggests the absence of statistical significance within a specific set of observed data. Hypothesis testing, using sample data, evaluates the validity of this hypothesis. Commonly denoted as H 0 or simply "null," it plays an important role in quantitative analysis, examining theories related to markets, investment strategies, or economies to determine their validity.
Null Hypothesis Meaning
Null Hypothesis represents a default position, often suggesting no effect or difference, against which researchers compare their experimental results. The Null Hypothesis, often denoted as H 0 asserts a default assumption in statistical analysis. It posits no significant difference or effect, serving as a baseline for comparison in hypothesis testing.
The null Hypothesis is represented as H 0 , the Null Hypothesis symbolizes the absence of a measurable effect or difference in the variables under examination.
Certainly, a simple example would be asserting that the mean score of a group is equal to a specified value like stating that the average IQ of a population is 100.
The Null Hypothesis is typically formulated as a statement of equality or absence of a specific parameter in the population being studied. It provides a clear and testable prediction for comparison with the alternative hypothesis. The formulation of the Null Hypothesis typically follows a concise structure, stating the equality or absence of a specific parameter in the population.
Mean Comparison (Two-sample t-test)
H 0 : μ 1 = μ 2
This asserts that there is no significant difference between the means of two populations or groups.
Proportion Comparison
H 0 : p 1 − p 2 = 0
This suggests no significant difference in proportions between two populations or conditions.
Equality in Variance (F-test in ANOVA)
H 0 : σ 1 = σ 2
This states that there's no significant difference in variances between groups or populations.
Independence (Chi-square Test of Independence):
H 0 : Variables are independent
This asserts that there's no association or relationship between categorical variables.
Null Hypotheses vary including simple and composite forms, each tailored to the complexity of the research question. Understanding these types is pivotal for effective hypothesis testing.
Equality Null Hypothesis (Simple Null Hypothesis)
The Equality Null Hypothesis, also known as the Simple Null Hypothesis, is a fundamental concept in statistical hypothesis testing that assumes no difference, effect or relationship between groups, conditions or populations being compared.
Non-Inferiority Null Hypothesis
In some studies, the focus might be on demonstrating that a new treatment or method is not significantly worse than the standard or existing one.
Superiority Null Hypothesis
The concept of a superiority null hypothesis comes into play when a study aims to demonstrate that a new treatment, method, or intervention is significantly better than an existing or standard one.
Independence Null Hypothesis
In certain statistical tests, such as chi-square tests for independence, the null hypothesis assumes no association or independence between categorical variables.
Homogeneity Null Hypothesis
In tests like ANOVA (Analysis of Variance), the null hypothesis suggests that there's no difference in population means across different groups.
- Medicine: Null Hypothesis: "No significant difference exists in blood pressure levels between patients given the experimental drug versus those given a placebo."
- Education: Null Hypothesis: "There's no significant variation in test scores between students using a new teaching method and those using traditional teaching."
- Economics: Null Hypothesis: "There's no significant change in consumer spending pre- and post-implementation of a new taxation policy."
- Environmental Science: Null Hypothesis: "There's no substantial difference in pollution levels before and after a water treatment plant's establishment."
The principle of the null hypothesis is a fundamental concept in statistical hypothesis testing. It involves making an assumption about the population parameter or the absence of an effect or relationship between variables.
In essence, the null hypothesis (H 0 ) proposes that there is no significant difference, effect, or relationship between variables. It serves as a starting point or a default assumption that there is no real change, no effect or no difference between groups or conditions.
The null hypothesis is usually formulated to be tested against an alternative hypothesis (H 1 or H \alpha ) which suggests that there is an effect, difference or relationship present in the population.
Null Hypothesis Rejection
Rejecting the Null Hypothesis occurs when statistical evidence suggests a significant departure from the assumed baseline. It implies that there is enough evidence to support the alternative hypothesis, indicating a meaningful effect or difference. Null Hypothesis rejection occurs when statistical evidence suggests a deviation from the assumed baseline, prompting a reconsideration of the initial hypothesis.
Identifying the Null Hypothesis involves defining the status quotient, asserting no effect and formulating a statement suitable for statistical analysis.
When is Null Hypothesis Rejected?
The Null Hypothesis is rejected when statistical tests indicate a significant departure from the expected outcome, leading to the consideration of alternative hypotheses. It occurs when statistical evidence suggests a deviation from the assumed baseline, prompting a reconsideration of the initial hypothesis.
In statistical hypothesis testing, researchers begin by stating the null hypothesis, often based on theoretical considerations or previous research. The null hypothesis is then tested against an alternative hypothesis (Ha), which represents the researcher's claim or the hypothesis they seek to support.
The process of hypothesis testing involves collecting sample data and using statistical methods to assess the likelihood of observing the data if the null hypothesis were true. This assessment is typically done by calculating a test statistic, which measures the difference between the observed data and what would be expected under the null hypothesis.
In the realm of hypothesis testing, the null hypothesis (H 0 ) and alternative hypothesis (H₁ or Ha) play critical roles. The null hypothesis generally assumes no difference, effect, or relationship between variables, suggesting that any observed change or effect is due to random chance. Its counterpart, the alternative hypothesis, asserts the presence of a significant difference, effect, or relationship between variables, challenging the null hypothesis. These hypotheses are formulated based on the research question and guide statistical analyses.
Difference Between Null Hypothesis and Alternative Hypothesis
The null hypothesis (H 0 ) serves as the baseline assumption in statistical testing, suggesting no significant effect, relationship, or difference within the data. It often proposes that any observed change or correlation is merely due to chance or random variation. Conversely, the alternative hypothesis (H 1 or Ha) contradicts the null hypothesis, positing the existence of a genuine effect, relationship or difference in the data. It represents the researcher's intended focus, seeking to provide evidence against the null hypothesis and support for a specific outcome or theory. These hypotheses form the crux of hypothesis testing, guiding the assessment of data to draw conclusions about the population being studied.
Let's envision a scenario where a researcher aims to examine the impact of a new medication on reducing blood pressure among patients. In this context:
Null Hypothesis (H 0 ): "The new medication does not produce a significant effect in reducing blood pressure levels among patients."
Alternative Hypothesis (H 1 or Ha): "The new medication yields a significant effect in reducing blood pressure levels among patients."
The null hypothesis implies that any observed alterations in blood pressure subsequent to the medication's administration are a result of random fluctuations rather than a consequence of the medication itself. Conversely, the alternative hypothesis contends that the medication does indeed generate a meaningful alteration in blood pressure levels, distinct from what might naturally occur or by random chance.
People Also Read:
Mathematics Maths Formulas Probability and Statistics
Example 1: A researcher claims that the average time students spend on homework is 2 hours per night.
Null Hypothesis (H 0 ): The average time students spend on homework is equal to 2 hours per night. Data: A random sample of 30 students has an average homework time of 1.8 hours with a standard deviation of 0.5 hours. Test Statistic and Decision: Using a t-test, if the calculated t-statistic falls within the acceptance region, we fail to reject the null hypothesis. If it falls in the rejection region, we reject the null hypothesis. Conclusion: Based on the statistical analysis, we fail to reject the null hypothesis, suggesting that there is not enough evidence to dispute the claim of the average homework time being 2 hours per night.
Example 2: A company asserts that the error rate in its production process is less than 1%.
Null Hypothesis (H 0 ): The error rate in the production process is 1% or higher. Data: A sample of 500 products shows an error rate of 0.8%. Test Statistic and Decision: Using a z-test, if the calculated z-statistic falls within the acceptance region, we fail to reject the null hypothesis. If it falls in the rejection region, we reject the null hypothesis. Conclusion: The statistical analysis supports rejecting the null hypothesis, indicating that there is enough evidence to dispute the company's claim of an error rate of 1% or higher.
Q1. A researcher claims that the average time spent by students on homework is less than 2 hours per day. Formulate the null hypothesis for this claim?
Q2. A manufacturing company states that their new machine produces widgets with a defect rate of less than 5%. Write the null hypothesis to test this claim?
Q3. An educational institute believes that their online course completion rate is at least 60%. Develop the null hypothesis to validate this assertion?
Q4. A restaurant claims that the waiting time for customers during peak hours is not more than 15 minutes. Formulate the null hypothesis for this claim?
Q5. A study suggests that the mean weight loss after following a specific diet plan for a month is more than 8 pounds. Construct the null hypothesis to evaluate this statement?
Summary - Null Hypothesis and Alternative Hypothesis
The null hypothesis (H 0 ) and alternative hypothesis (H a ) are fundamental concepts in statistical hypothesis testing. The null hypothesis represents the default assumption, stating that there is no significant effect, difference, or relationship between variables. It serves as the baseline against which the alternative hypothesis is tested. In contrast, the alternative hypothesis represents the researcher's hypothesis or the claim to be tested, suggesting that there is a significant effect, difference, or relationship between variables. The relationship between the null and alternative hypotheses is such that they are complementary, and statistical tests are conducted to determine whether the evidence from the data is strong enough to reject the null hypothesis in favor of the alternative hypothesis. This decision is based on the strength of the evidence and the chosen level of significance. Ultimately, the choice between the null and alternative hypotheses depends on the specific research question and the direction of the effect being investigated.
FAQs on Null Hypothesis
What does null hypothesis stands for.
The null hypothesis, denoted as H 0 , is a fundamental concept in statistics used for hypothesis testing. It represents the statement that there is no effect or no difference, and it is the hypothesis that the researcher typically aims to provide evidence against.
How to Form a Null Hypothesis?
A null hypothesis is formed based on the assumption that there is no significant difference or effect between the groups being compared or no association between variables being tested. It often involves stating that there is no relationship, no change, or no effect in the population being studied.
When Do we reject the Null Hypothesis?
In statistical hypothesis testing, if the p-value (the probability of obtaining the observed results) is lower than the chosen significance level (commonly 0.05), we reject the null hypothesis. This suggests that the data provides enough evidence to refute the assumption made in the null hypothesis.
What is a Null Hypothesis in Research?
In research, the null hypothesis represents the default assumption or position that there is no significant difference or effect. Researchers often try to test this hypothesis by collecting data and performing statistical analyses to see if the observed results contradict the assumption.
What Are Alternative and Null Hypotheses?
The null hypothesis (H0) is the default assumption that there is no significant difference or effect. The alternative hypothesis (H1 or Ha) is the opposite, suggesting there is a significant difference, effect or relationship.
What Does it Mean to Reject the Null Hypothesis?
Rejecting the null hypothesis implies that there is enough evidence in the data to support the alternative hypothesis. In simpler terms, it suggests that there might be a significant difference, effect or relationship between the groups or variables being studied.
How to Find Null Hypothesis?
Formulating a null hypothesis often involves considering the research question and assuming that no difference or effect exists. It should be a statement that can be tested through data collection and statistical analysis, typically stating no relationship or no change between variables or groups.
How is Null Hypothesis denoted?
The null hypothesis is commonly symbolized as H 0 in statistical notation.
What is the Purpose of the Null hypothesis in Statistical Analysis?
The null hypothesis serves as a starting point for hypothesis testing, enabling researchers to assess if there's enough evidence to reject it in favor of an alternative hypothesis.
What happens if we Reject the Null hypothesis?
Rejecting the null hypothesis implies that there is sufficient evidence to support an alternative hypothesis, suggesting a significant effect or relationship between variables.
What are Test for Null Hypothesis?
Various statistical tests, such as t-tests or chi-square tests, are employed to evaluate the validity of the Null Hypothesis in different scenarios.
Similar Reads
- Null Hypothesis Null Hypothesis, often denoted as H0, is a foundational concept in statistical hypothesis testing. It represents an assumption that no significant difference, effect, or relationship exists between variables within a population. It serves as a baseline assumption, positing no observed change or effe 12 min read
- Hypothesis Testing Formula Statistics is a discipline of applied mathematics that deals with gathering, describing, analyzing, and inferring conclusions from numerical data. Differential and integral calculus, linear algebra, and probability theory are all used substantially in statistics' mathematical theories. Statisticians 8 min read
- SQL IS NULL SQL IS NULL is a logical operator that checks for NULL values in a column. IS NULL Operator in SQLIS NULL Operator in SQL is used to test for empty or missing values in a column. It checks if the specified expression evaluates to NULL, if it evaluates to NULL, it returns TRUE; otherwise, it returns 3 min read
- SQLite IS NULL SQLite is a server-less database engine and it is written in c programming language. It is developed by D. Richard Hipp in the year 2000. The main moto for developing the SQLite is to escape from using the complex database engines like MYSQL.etc. It has become one of the most popular database engine 6 min read
- MySQL NOT NULL Constraint In the database management system maintaining data reliability and data accuracy is very important. MySQL is a popular relational database management system, which offers various constraints to provide security and ensure the integrity of the stored data. There are various key constraints present in 4 min read
- Permutation Hypothesis Test in R Programming In simple words, the permutation hypothesis test in R is a way of comparing a numerical value of 2 groups. The permutation Hypothesis test is an alternative to: Independent two-sample t-test Mann-Whitney U aka Wilcoxon Rank-Sum Test Let's implement this test in R programming. Why use the Permutation 6 min read
- Null in JavaScript In JavaScript, `null` indicates the deliberate absence of any object value. It's a primitive value that denotes the absence of a value or serves as a placeholder for an object that isn't present. `null` differs from `undefined`, which signifies a variable that has been declared but hasn't been assig 3 min read
- What is Null Session? The null session attack has been present since Windows 2000 was extensively used; yet, system administrators do not take this type of attack into account when implementing network security measures. This can have unimaginable consequences since hackers can use this type of attack to obtain all of th 4 min read
- How to Use the linearHypothesis() Function in R In statistics, understanding how variables relate to each other is crucial. This helps in making smart decisions. When we build regression models, we need to check if certain combinations of variables are statistically significant. In R Programming Language a tool called linear hypothesis () in the 4 min read
- What is /Dev/Null in Linux? If you have been learning shell programming, you may already have come across something like /dev/null. In this article, we will understand what it is and how it is used. Let's start off by understanding what /dev is. What is /dev?In the Linux file system, everything is a file or a directory. Even d 5 min read
- MySQL Handling NULL Values In MySQL, NULL values represent the absence of data or a missing value. Understanding how to handle NULL values is crucial for effective database management and querying. This article will cover various aspects of working with NULL how to handle them in queries, update statements, and table definiti 4 min read
- SQLite NOT NULL Constraint SQLite is a very lightweight and embedded Relational Database Management System (RDBMS). It requires very minimal configuration and it is self-contained. It is serverless, therefore it is a perfect fit for mobile applications, simple desktop applications, and embedded systems. While it may not be a 4 min read
- Why hypothesis testing is important in research ? Hypothesis Testing allows researchers to evaluate the validity of their assumptions and draw conclusions based on evidence. It provides a framework for making predictions and determining whether observed results are statistically significant or just occurred by chance. By applying various statistica 6 min read
- How to use Is Not Null in PySpark In data processing, handling null values is a crucial task to ensure the accuracy and reliability of the analysis. PySpark, the Python API for Apache Spark, provides powerful methods to handle null values efficiently. In this article, we will go through how to use the isNotNull method in PySpark to 4 min read
- MySQL IS NULL Operator The IS NULL operator in MySQL is a powerful tool for handling records with missing or incomplete data. It enables precise querying and data management by allowing users to identify and act upon fields where values are absent. In this article, We will learn about the MySQL IS NULL Operator by underst 3 min read
- Null Space of a Matrix Null space of a matrix is a fundamental concept in linear algebra that describes the set of all possible solutions to the equation Ax = 0, where A is a matrix and x is a vector. This space consists of vectors that, when multiplied by the matrix A, result in the zero vector. In simpler terms, if you 6 min read
- MariaDB Not Null Constraint MariaDB is an open-source relational database management system. In a relational database, data integrity is very important. So, we use the NOT NULL constraint to ensure the data integrity in a table within a database. So, In this article, we are going to discuss how a NOT NULL constraint helps to m 4 min read
- Testing Various Hypothesis Test for Coefficients in R Hypothesis testing plays a critical role in statistical modeling, helping us assess whether the independent variables (predictors) in a model significantly impact the dependent variable (outcome). In the context of regression analysis, testing the coefficients allows us to evaluate the significance 5 min read
- NULL Pointer in C++ A NULL Pointer in C++ indicates the absence of a valid memory address in C++. It tells that the pointer is not pointing to any valid memory location In other words, it has the value "NULL" (or 'nullptr' since C++11). This is generally done at the time of variable declaration to check whether the poi 4 min read
- Geeks Premier League
- School Learning
- Geeks Premier League 2023
- Math-Concepts
Improve your Coding Skills with Practice
What kind of Experience do you want to share?
Have a thesis expert improve your writing
Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.
- Knowledge Base
- Null and Alternative Hypotheses | Definitions & Examples
Null and Alternative Hypotheses | Definitions & Examples
Published on 5 October 2022 by Shaun Turney . Revised on 6 December 2022.
The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :
- Null hypothesis (H 0 ): There’s no effect in the population .
- Alternative hypothesis (H A ): There’s an effect in the population.
The effect is usually the effect of the independent variable on the dependent variable .
Table of contents
Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, differences between null and alternative hypotheses, how to write null and alternative hypotheses, frequently asked questions about null and alternative hypotheses.
The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”, the null hypothesis (H 0 ) answers “No, there’s no effect in the population.” On the other hand, the alternative hypothesis (H A ) answers “Yes, there is an effect in the population.”
The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample.
You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.
The null hypothesis is the claim that there’s no effect in the population.
If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.
Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept. Be careful not to say you “prove” or “accept” the null hypothesis.
Null hypotheses often include phrases such as “no effect”, “no difference”, or “no relationship”. When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).
Examples of null hypotheses
The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.
*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .
The alternative hypothesis (H A ) is the other answer to your research question . It claims that there’s an effect in the population.
Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.
The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.
Alternative hypotheses often include phrases such as “an effect”, “a difference”, or “a relationship”. When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes > or <). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.
Examples of alternative hypotheses
The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.
Null and alternative hypotheses are similar in some ways:
- They’re both answers to the research question
- They both make claims about the population
- They’re both evaluated by statistical tests.
However, there are important differences between the two types of hypotheses, summarized in the following table.
To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.
The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:
Does independent variable affect dependent variable ?
- Null hypothesis (H 0 ): Independent variable does not affect dependent variable .
- Alternative hypothesis (H A ): Independent variable affects dependent variable .
Test-specific
Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.
Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.
The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).
The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).
A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).
A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.
Cite this Scribbr article
If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.
Turney, S. (2022, December 06). Null and Alternative Hypotheses | Definitions & Examples. Scribbr. Retrieved 3 December 2024, from https://www.scribbr.co.uk/stats/null-and-alternative-hypothesis/
Is this article helpful?
Shaun Turney
Other students also liked, levels of measurement: nominal, ordinal, interval, ratio, the standard normal distribution | calculator, examples & uses, types of variables in research | definitions & examples.
- Science, Tech, Math ›
- Chemistry ›
- Chemical Laws ›
Null Hypothesis Definition and Examples
PM Images / Getty Images
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Scientific Method
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College
In a scientific experiment, the null hypothesis is the proposition that there is no effect or no relationship between phenomena or populations. If the null hypothesis is true, any observed difference in phenomena or populations would be due to sampling error (random chance) or experimental error. The null hypothesis is useful because it can be tested and found to be false, which then implies that there is a relationship between the observed data. It may be easier to think of it as a nullifiable hypothesis or one that the researcher seeks to nullify. The null hypothesis is also known as the H 0, or no-difference hypothesis.
The alternate hypothesis, H A or H 1 , proposes that observations are influenced by a non-random factor. In an experiment, the alternate hypothesis suggests that the experimental or independent variable has an effect on the dependent variable .
How to State a Null Hypothesis
There are two ways to state a null hypothesis. One is to state it as a declarative sentence, and the other is to present it as a mathematical statement.
For example, say a researcher suspects that exercise is correlated to weight loss, assuming diet remains unchanged. The average length of time to achieve a certain amount of weight loss is six weeks when a person works out five times a week. The researcher wants to test whether weight loss takes longer to occur if the number of workouts is reduced to three times a week.
The first step to writing the null hypothesis is to find the (alternate) hypothesis. In a word problem like this, you're looking for what you expect to be the outcome of the experiment. In this case, the hypothesis is "I expect weight loss to take longer than six weeks."
This can be written mathematically as: H 1 : μ > 6
In this example, μ is the average.
Now, the null hypothesis is what you expect if this hypothesis does not happen. In this case, if weight loss isn't achieved in greater than six weeks, then it must occur at a time equal to or less than six weeks. This can be written mathematically as:
H 0 : μ ≤ 6
The other way to state the null hypothesis is to make no assumption about the outcome of the experiment. In this case, the null hypothesis is simply that the treatment or change will have no effect on the outcome of the experiment. For this example, it would be that reducing the number of workouts would not affect the time needed to achieve weight loss:
H 0 : μ = 6
Null Hypothesis Examples
"Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a null hypothesis.
Another example of a null hypothesis is "Plant growth rate is unaffected by the presence of cadmium in the soil ." A researcher could test the hypothesis by measuring the growth rate of plants grown in a medium lacking cadmium, compared with the growth rate of plants grown in mediums containing different amounts of cadmium. Disproving the null hypothesis would set the groundwork for further research into the effects of different concentrations of the element in soil.
Why Test a Null Hypothesis?
You may be wondering why you would want to test a hypothesis just to find it false. Why not just test an alternate hypothesis and find it true? The short answer is that it is part of the scientific method. In science, propositions are not explicitly "proven." Rather, science uses math to determine the probability that a statement is true or false. It turns out it's much easier to disprove a hypothesis than to positively prove one. Also, while the null hypothesis may be simply stated, there's a good chance the alternate hypothesis is incorrect.
For example, if your null hypothesis is that plant growth is unaffected by duration of sunlight, you could state the alternate hypothesis in several different ways. Some of these statements might be incorrect. You could say plants are harmed by more than 12 hours of sunlight or that plants need at least three hours of sunlight, etc. There are clear exceptions to those alternate hypotheses, so if you test the wrong plants, you could reach the wrong conclusion. The null hypothesis is a general statement that can be used to develop an alternate hypothesis, which may or may not be correct.
- Kelvin Temperature Scale Definition
- Independent Variable Definition and Examples
- Theory Definition in Science
- Hypothesis Definition (Science)
- de Broglie Equation Definition
- Law of Combining Volumes Definition
- Chemical Definition
- Pure Substance Definition in Chemistry
- Acid Definition and Examples
- Extensive Property Definition (Chemistry)
- Radiation Definition and Examples
- Valence Definition in Chemistry
- Atomic Solid Definition
- Weak Base Definition and Examples
- Oxidation Definition and Example in Chemistry
- Definition of Binary Compound
Ask an Academic
Why Does Research Require a Null Hypothesis?
Every researcher is required to establish hypotheses in order to predict, tentatively, the outcome of the research.
What is a null hypothesis and why does research need one?
Every researcher is required to establish hypotheses in order to predict, tentatively, the outcome of the research (Leedy & Ormrod, 2016). A null hypothesis is “the result of chance alone”, there’s no patterns, differences or relationships between variables (Leedy & Ormrod, 2016). Whether the outcome is positive or negative, the requirement of a null hypothesis in addition of your alternative hypothesis means that your research (and you as the researcher as well) is not one-sided (Bland & Altman, 1994). In other words, you and the research are open to the possibility that maybe or maybe not a difference between the variables exists and open to the possibility that the outcome of the research is due to a reason (alternative hypothesis) or a chance (null hypothesis) (Leedy & Ormrod, 2016; Pierce, 2008 & Bland & Altman, 1994).
After collecting data, the hypotheses must be tested in order to reach a conclusion (Daniel & Cross, 2013). A null hypothesis is tested when the probability of the results are “due to chance alone” but the data collected reasonably suggest that something (a factor, a reason or other variable) in the studied environment/population leads to a difference/relationship/pattern between them (Leedy & Ormrod, 2016 & Pierce, 2008). A null hypothesis is used to draw conclusions from the collected data when the “process of comparing data” with the expected outcome (results) of chance alone (Leedy & Ormrod, 2016). When the result is because of “something other than chance”, the null hypothesis is rejected and the alternative hypothesis comes to play because the data, indirectly, led us to support it (Leedy & Ormrod, 2016). The alternative hypothesis might be the one the researcher wants to be accepted, however, it “can only be accepted” if after the collected data shows that the null hypothesis “has been rejected” (Pierce, 2008).
Bland, J. M., & Altman, D. G. (1994). Statistics Notes: One and two sided tests of significance. British Medical Journal (BMJ), 309 , 248-248. doi:10.1136/bmj.309.6949.248
Daniel, W. W., & Cross, C. L. (2013). Chapter 7 Hypothesis Testing. In Biostatistics: A Foundation for Analysis in the Health Sciences (10th ed., pp. 214-303). Hoboken, NJ: Wiley. Retrieved February 13, 2018, from https://msph1blog.files.wordpress.com/2016/10/biostatistics-_daniel-10th1.pdf .
Leedy, P. D., & Ormrod, J. E. (2016). Practical Research: Planning and Design (11th ed.). NJ: Pearson Education . Retrieved February 13, 2018, from https://digitalbookshelf.argosy.edu/#/books/9781323328798/cfi/6/6!/4/2/2/48@0:0 .
Pierce, T. (2008, September). Independent samples t-test. Retrieved February 13, 2018, from http://www.radford.edu/~tpierce/610%20files/Data%20Analysis%20for%20Professional%20Psychologists/Independent%20samples%20t-test%2010-02-09.pdf
Privacy Overview
Null Hypothesis vs. Hypothesis: What’s the Difference?
Published: October 5, 2024 by Liam Frady
- A null hypothesis is a way of testing for no relationship between data sets.
- A hypothesis is a way of testing for a relationship between data sets.
- You can use both tests in conjunction with one another during your analysis stage.
Null hypothesis vs. hypothesis, which is the right choice? When you get into the different methods of analyzing data, there is no shortage of tools at your disposal. Understanding the difference between a null hypothesis and a hypothesis can make or break your testing and analysis stages. Let’s dive into both of these tools and clarify which is best suited for a given application.
What Is the Null Hypothesis?
A null hypothesis is a prediction that there is no statistical relationship between two variables or two sets of data. Essentially, a null hypothesis assumes that any measured differences are the result of randomness and that the two possibilities are the same until proven otherwise.
The Benefits of a Null Hypothesis
A null hypothesis is commonly used in research to determine whether there is a real relationship between two measured phenomena. To this end, it offers the ability to distinguish between results that are the result of random chance or if there is a legitimate statistical relationship.
How to Create a Null Hypothesis
To create a null hypothesis, start by asking a few questions about the set of data or experiments. Then rephrase those questions into a statement that assumes no relationship. Subsequently, null hypotheses usually include phrases such as “no relationship,” “no effect,” etc.
For example, let’s say you are looking at some data about whether the number of people on a project affects the overall ability of the team to accomplish its goals.
A question might look like this:
“Does the number of people working on a team project impact the ability of the team to achieve the goals of the project?”
However, rephrasing this into a null hypothesis that assumes no relationship would look like this:
“The number of people working on a team project does not impact the ability of the team to achieve the goals of the project.”
The null hypothesis is assumed true until proven otherwise.
What Is a Hypothesis?
A hypothesis, also known as an alternative hypothesis, is an educated theory or “guess” based on limited evidence that requires further testing to be proven true or false. It is used in an experiment to define a relationship between two variables.
The Benefits of a Hypothesis
A hypothesis helps a researcher prove or disprove their theories, or guesses, using limited data and knowledge. In effect, researchers and scientists will create a formalized hypothesis based on past data or experiments. This hypothesis forces them to think about what they should be looking for in their experiments.
How to Create a Hypothesis
The best way to create a hypothesis is first to create a null hypothesis. Once you have your null hypothesis that states there is no relationship, you can then revise the statement that implies a relationship does exist. This is the reason it is referred to as an “alternative hypothesis.”
As an example:
Null hypothesis: There is no relationship between mediation and the reduction of depression. Alternative hypothesis: The practice of meditation reduces depression.
In this example, the research wants to disprove that there is no relationship between meditation and the reduction of depression and prove that meditation does reduce depression. Specifically, the researcher’s goal is to prove their hypothesis through statistical data.
Null Hypothesis vs. Hypothesis: What’s the Difference?
In the simplest terms, a hypothesis is something that a researcher tries to prove, while a null hypothesis is something that a researcher tries to disprove. Both are used when performing research and evaluating data.
There are two variables in a hypothesis. The first is called the independent variable. This is the driving force of the experiment or research. The second is called the dependent variable, which is the measurable result.
However, the biggest difference between the two is that a null hypothesis cannot be proven; it can only be rejected.
Null Hypothesis vs. Hypothesis: Who Would Use Null Hypothesis and/or Hypothesis?
Having both a null hypothesis and hypothesis is beneficial and required in nearly all fields of research. Having both null and alternative hypotheses offers competing views in your research. Researchers weigh the evidence for and against the two hypotheses using a statistical test.
The statistical data is used to prove or disprove the alternative hypothesis. Additionally, If an alternative hypothesis is disproved, researchers can then modify their alternative hypothesis and look at their experimentation method(s) to achieve their goals and improve the accuracy of their experiments.
Why Does It Matter?
Doing any sort of hypothesis testing with your data serves a crucial purpose. By figuring out if effective and impactful changes have been made to your production, you’re getting closer to realizing the ideal of a 6 Sigma rating. It takes time and effort to conduct such tests, but if you’re looking to maximize quality while reducing waste, it pays to test.
Choosing Between Null Hypothesis and Hypothesis: Real World Scenarios
Null and alternative hypotheses are used extensively in medical research. As such, let’s say a team of researchers is trying to determine if flossing decreases the number of cavities a person might experience.
Their null hypothesis might look like this:
“There is no relationship between tooth flossing and the number of cavities a person experiences.”
Their alternative hypothesis might be:
“Tooth flossing reduces the number of cavities a person experiences.”
In the world of investing, a null hypothesis is frequently used in the quantitative analysis of data to test theories about economies, investing strategies, and other financial markets.
An example of a null hypothesis: The mean annual return of a stock option is 3%.
An example of an alternative hypothesis: The mean annual return of a stock option is NOT 3%.
Essentially, the theories are the alternative hypothesis you are trying to prove, and the null hypothesis is the statement you are trying to disprove.
Other Useful Tools and Concepts
While testing your data for meaningful changes is useful, there are other things to keep in mind when plotting your process improvement. Learning the differences between flowcharts and process maps can be vital when visualizing a given process. As such, you might want to learn the differences and benefits of these two tools.
Additionally, understanding the meaning behind repeatability and reproducibility can be crucial for your processes. These terms have general meanings used in everyday conversation, but understanding their definition within the context of your organization can lead to greater customer satisfaction.
The bottom line is that both types of hypotheses are required for proper research and data evaluation. Create a null hypothesis to disprove and an alternative hypothesis to prove. Collect and evaluate the data to determine which hypothesis is favored.
Join 65,000 Black Belts and Register For The Industry Leading ISIXSIGMA Newsletter Today
About the author.
IMAGES
VIDEO
COMMENTS
Often, your alternative hypothesis is the same as your research hypothesis. In other words, it's the claim that you expect or hope will be true. The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome.
A null hypothesis is a statistical concept suggesting no significant difference or relationship between measured variables. It's the default assumption unless empirical evidence proves otherwise. The null hypothesis states no relationship exists between the two variables being studied (i.e., one variable does not affect the other).
What is a Null Hypothesis in Research? In research, the null hypothesis represents the default assumption or position that there is no significant difference or effect. Researchers often try to test this hypothesis by collecting data and performing statistical analyses to see if the observed results contradict the assumption.
A research hypothesis is a mathematical way of stating a research question. A research hypothesis names the groups (we'll start with a sample and a population), what was measured, and which we think will have a higher mean. The last one gives the research hypothesis a direction. In other words, a research hypothesis should include:
Answering your research question with hypotheses. The null and alternative hypotheses offer competing answers to your research question.When the research question asks "Does the independent variable affect the dependent variable?", the null hypothesis (H 0) answers "No, there's no effect in the population."On the other hand, the alternative hypothesis (H A) answers "Yes, there is ...
Disproving the null hypothesis would set the groundwork for further research into the effects of different concentrations of the element in soil. ... you could reach the wrong conclusion. The null hypothesis is a general statement that can be used to develop an alternate hypothesis, which may or may not be correct. Cite this Article Format. mla ...
Null Hypothesis H 0: The correlation in the population is zero: ρ = 0. Alternative Hypothesis H A: The correlation in the population is not zero: ρ ≠ 0. For all these cases, the analysts define the hypotheses before the study. After collecting the data, they perform a hypothesis test to determine whether they can reject the null hypothesis.
Null Hypothesis Overview. The null hypothesis, H 0 is the commonly accepted fact; it is the opposite of the alternate hypothesis. Researchers work to reject, nullify or disprove the null hypothesis. Researchers come up with an alternate hypothesis, one that they think explains a phenomenon, and then work to reject the null hypothesis. Read on ...
What is a null hypothesis and why does research need one? Answer. Every researcher is required to establish hypotheses in order to predict, tentatively, the outcome of the research (Leedy & Ormrod, 2016). A null hypothesis is "the result of chance alone", there's no patterns, differences or relationships between variables (Leedy & Ormrod ...
A null hypothesis is commonly used in research to determine whether there is a real relationship between two measured phenomena. To this end, it offers the ability to distinguish between results that are the result of random chance or if there is a legitimate statistical relationship.